
Web Audio Evaluation Tool: A framework for subjective
assessment of audio

Nicholas Jillings
n.g.r.jillings@se14.qmul.ac.uk

Brecht De Man
b.deman@qmul.ac.uk

David Moffat
d.j.moffat@qmul.ac.uk

Joshua D. Reiss
joshua.reiss@qmul.ac.uk

Centre for Digital Music, School of Electronic Engineering and Computer Science
Queen Mary University of London
Mile End Road, London E1 4NS

United Kingdom

ABSTRACT
Perceptual listening tests are commonplace in audio research
and a vital form of evaluation. Many tools exist to run such
tests, however many operate one test type and are there-
fore limited whilst most require proprietary software. Using
Web Audio the Web Audio Evaluation Tool (WAET) ad-
dresses these concerns by having one toolbox which can be
configured to run many different tests, perform it through
a web browser and without needing proprietary software or
computer programming knowledge. In this paper the role
of the Web Audio API in giving WAET key functionalities
are shown. The paper also highlights less common features,
available to web based tools, such as easy remote testing
environment and in-browser analytics.

1. INTRODUCTION
Perceptual evaluation of audio, in the form of listening

tests, is a powerful way to assess anything from audio codec
quality to realism of sound synthesis to the performance of
source separation, automated music production and other
auditory evaluations. In less technical areas, the framework
of a listening test can be used to measure emotional response
to music or test cognitive abilities.

Several applications for performing perceptual listening
tests currently exist. A review of existing listening test
frameworks was undertaken and presented in Table 1. Note
that many rely on proprietary, 3rd party software such as
MATLAB and MAX, making them less attractive for many.
With the exception of the existing JavaScript-based tool-
boxes, remote deployment (web-based test hosting and re-
sult collection) is not possible.

HULTI-GEN [1] is a single example of a toolbox that
presents the user with a large number of different test in-
terfaces and allows for customisation of each test interface,

Licensed under a Creative Commons Attribution 4.0 International License (CC BY
4.0). Attribution: owner/author(s).

Web Audio Conference WAC-2016, April 4–6, 2016, Atlanta, USA
c© 2016 Copyright held by the owner/author(s). .

without requiring knowledge of any programming language.
The Web Audio Evaluation Toolbox (WAET), presented
here, stands out as it does not require proprietary software
or a specific platform. It also provides a wide range of inter-
face and test types in one user friendly environment. Fur-
thermore any test based on the default test types can be
configured in the browser as well. Note that the design of
an effective listening test further poses many challenges un-
related to interface design, which are beyond the scope of
this paper [2].

The Web Audio API provides important features includ-
ing sample level manipulation of audio streams [3] and syn-
chronous and flexible playback. Being in the browser allows
leveraging the flexible object oriented JavaScript language
and native support for web documents, such as the extensi-
ble markup language (XML) which is used for configuration
and test result files. Using the web also reduces deployment
requirements to a basic web server with extra functionality,
such as test collection and automatic processing, using PHP.
As recruiting participants can be very time-consuming, and
as for some tests a large number of participants is needed,
browser-based tests can enable participants in multiple lo-
cations to perform the test [3].

Both BeaqleJS [4] and mushraJS1 also operate in the
browser. However, BeaqleJS does not make use of the Web
Audio API and therefore lacks arbitrary manipulation of
audio stream samples, and neither offer an adequately wide
choice of test designs for them to be useful to many re-
searchers.

To meet the need for a cross-platform, versatile and easy-
to-use listening test tool, we previously developed the Web
Audio Evaluation Tool [9] which at the time of its inception
was capable of running a listening test in the browser from
an XML configuration file, and storing an XML file as well,
with one particular interface. This has now expanded into
a tool with which a wide range of listening test types can
easily be constructed and set up remotely, without any need
for manually altering code or configuration files, and allows
visualisation of the collected results in the browser. In this
paper, we discuss these different aspects and explore which
future improvements would be possible.

1https://github.com/akaroice/mushraJS



Table 1: Table with existing listening test platforms and their features

Toolbox A
P
E

B
e
a
q
le
J
S

H
U
L
T
I-
G
E
N

m
u
sh

r
a
J
S

M
U
S
H
R
A
M

S
c
a
le

W
h
is
P
E
R

W
A
E
T

Reference [5] [4] [1] [6] [7] [8] [9]
Language MATLAB JS MAX JS MATLAB MATLAB MATLAB JS
Remote (X) X X

MUSHRA (ITU-R BS. 1534) X X X X X
APE X X
Rank Scale X X
Likert Scale X X X
ABC/HR (ITU-R BS. 1116) X X
-50 to 50 Bipolar with ref. X X
Absolute Category Rating Scale X X
Degradation Category Rating Scale X X
Comparison Category Rating Scale X X X
9 Point Hedonic Category Rating Scale X X X
ITU-R 5 Continuous Impairment Scale X X
Pairwise / AB Test X X
Multi-attribute ratings X X
ABX Test X X X
Adaptive psychophysical methods X
Repertory Grid Technique X
Semantic Differential X X X
n-Alternative Forced Choice X

Figure 1: A simple example of a multi-stimulus, sin-
gle attribute, single rating scale test with a reference
and comment fields.

2. ARCHITECTURE
Although WAET uses a sparse subset of the Web Au-

dio API functionality, its performance comes directly from
it. Listening tests can convey large amounts of information
other than obtaining the perceptual relationship between the
audio fragments. With WAET it is possible to track which
parts of the audio fragments were listened to and when, at
what point in the audio stream the participant switched to
a different fragment, and how a fragment’s rating was ad-
justed over time within a session, to name a few. Not only
does this allow evaluation of a wealth of perceptual aspects,
but it also helps detect poor participants whose results are
potentially not representative.

One of the key initial design parameters for WAET was
to make the tool as open as possible to non-programmers

and to this end all of the user modifiable options are in-
cluded in a single XML document. This document is the
specification document and can be designed either by man-
ually writing the XML (or modifying an existing document
or template) or using the included test creator. These stan-
dalone HTML pages do not require any server or internet
connection and help a build the specification document. The
first (test create.html) is for simple tests and operates step-
by-step to guide the user through a drag and drop, clutter
free interface. The advanced version is for more complex
tests. Both models support automatic verification to ensure
the XML file is valid and will highlight areas which are ei-
ther incorrect and would cause an error, or options which
should be removed as they are blank.

The basic test creator, Figure ??, utilises the Web Audio
API to perform quick playback checks and also allows for
loudness normalisation techniques inspired from [5]. These
are calculated offline by accessing the raw audio samples ex-
posed from the buffer before being applied to the audio ele-
ment as a gain attribute. Therefore the tool performs loud-
ness normalisation without editing any audio files. Equally
the gain attribute can be modified in either editor using an
HTML5 slider or number box respectively.

The specification document contains the URL of the audio
fragments for each test page. These fragments are down-
loaded asynchronously in the test and decoded offline by
the Web Audio offline decoder. The resulting buffers are
assigned to a custom Audio Objects node which tracks the
fragment buffer, the playback bufferSourceNode, other speci-
fication attributes including its unique test ID, the interface
object(s) associated with the fragment and any metric or
data collection objects. The Audio Object is controlled by
an over-arching custom Audio Context node (not to be con-
fused with the Web Audio Context). This parent JS Node



allows for session wide control of the Audio Objects includ-
ing starting and stopping playback of specific nodes.

The only issue with this model is the bufferNode in the
Web Audio API, implemented in the standard as a ‘use
once’ object. Once this has been played, the node must
be discarded as it cannot be instructed to play the same
bufferSourceNode again. Therefore on each play request the
buffer object must be created and then linked with the stored
bufferSourceNode. This is an odd behaviour for such a sim-
ple object which has no alternative except to use the HTML5
audio element. However, they do not have the ability to syn-
chronously start on a given time and therefore not suited.

In the test, each buffer node is connected to a gain node
which will operate at the level determined by the specifica-
tion document. Therefore it is possible to perform a ‘Method
of Adjustment’ test where an interface could directly manip-
ulate these gain nodes. These gain nodes are used for cross-
fading between samples when operating in synchronous play-
back. Cross-fading can either be fade-out fade-in or a true
cross-fade. There is also an optional ‘Master Volume’ slider
which can be shown on the test GUI. This slider modifies a
gain node before the destination node. This slider can also
be monitored and therefore its data tracked providing extra
validation. This is not indicative of the final volume exiting
the speakers and therefore its use should only be considered
in a lab environment to ensure proper usage.

The media files supported depend on the browser level
support for the initial decoding of information and is the
same as the browser support for the HTML5 audio element.
The most widely supported media file is the wave (.WAV)
format which is accepted by every browser supporting the
Web Audio API. The toolbox will work in any browser which
supports the Web Audio API.

All the collected session data is returned in an XML doc-
ument structured similarly to the configuration document,
where test pages contain the audio elements with their trace
collection, results, comments and any other interface-specific
data points.

3. REMOTE TESTS
If the experimenter is willing to trade some degree of con-

trol for a higher number of participants, the test can be
hosted on a public web server so that participants can take
part remotely. This way, a link can be shared widely in
the hope of attracting a large amount of subjects, while lis-
tening conditions and subject reliability may be less ideal.
However, a sound system calibration page and a wide range
of metrics logged during the test mitigate these problems.
In some experiments, it may be preferred that the subject
has a ‘real life’, familiar listening set-up, for instance when
perceived quality differences on everyday sound systems are
investigated. Furthermore, a fully browser-based test, where
the collection of the results is automatic, is more efficient
and technically reliable even when the test still takes place
under lab conditions.

The following features allow easy and effective remote
testing:
PHP script to collect result XML files and store on cen-

tral server.
Randomly pick a specified number of pages to ensure

an equal and randomised spread of the different pages
(‘audioHolders’) across participants.

Calibration of the sound system (and participant) by

a perceptual pre-test to gather information about the
frequency response and speaker configuration - this can
be supplemented with a survey.

Intermediate saves for tests which were interrupted or
unfinished.

Collect IP address information for geographic location,
through PHP function which grabs address and ap-
pends to XML file.

Collect Browser and Display information to the extent
it is available and reliable.

4. INTERFACES
The purpose of this listening test framework is to allow

any user the maximum flexibility to design a listening test
for their exact application with minimum effort. To this
end, a large range of standard listening test interfaces have
been implemented.

To provide users with a flexible system, a large range of
‘standard’ listening test interfaces have been implemented,
including:

• MUSHRA (ITU-R BS. 1534) [10]
• Rank Scale [11]: stimuli ranked on single horizontal

scale, where they are ordered in preference order.
• Likert scale [12]: each stimuli has a five point scale

with values: Strongly Agree, Agree, Neutral, Disagree
and Strongly Disagree.

• ABC/HR (ITU-R BS. 1116) [13] (Mean Opinion Score:
MOS): each stimulus has a continuous scale (5-1), la-
beled as Imperceptible, Perceptible but not annoying,
slightly annoying, annoying, very annoying.

• -50 to 50 Bipolar with Ref: each stimulus has a contin-
uous scale -50 to 50 with default values as 0 in middle
and a reference.

• Absolute Category Rating (ACR) Scale [14]: Likert
but labels are Bad, Poor, Fair, Good, Excellent

• Degredation Category Rating (DCR) Scale [14]: ABC
& Likert but labels are (5) Inaudible, (4) Audible but
not annoying, (3) slightly annoying, (2) annoying, (1)
very annoying.

• Comparison Category Rating (CCR) Scale [14]: ACR
& DCR but 7 point scale: Much Better, Better, Slightly
Better, About the same, slightly worse, worse, much
worse. There is also a provided reference.

• 9 Point Hedonic Category Rating Scale [15]: each stim-
uli has a seven point scale with values: Like Extremely,
Like Very Much, Like Moderate, Like Slightly, Neither
Like nor Dislike, dislike Extremely, dislike Very Much,
dislike Moderate, dislike Slightly. There is also a pro-
vided reference.

• ITU-R 5 Point Continuous Impairment Scale [16]: Same
as ABC/HR but with a reference.

• Pairwise Comparison (Better/Worse) [17]: every stim-
ulus is rated as being either better or worse than the
reference.

• APE style [5]: Multiple stimuli as points on a 2D plane
for inter-sample rating (eg. Valence Arousal)

• AB Test [18]: Two stimuli presented at a time, partic-
ipant selects a preferred stimulus.

• ABX Test [19]: Two stimuli are presented along with a
reference and the participant has to select a preferred
stimulus, often the closest to the reference.

It is possible to include any number of references, anchors,
hidden references and hidden anchors into all of these listen-



ing test formats.
Because of the design to separate the core code and in-

terface modules, it is possible for a 3rd party interface to
be built with minimal effort. The repository includes docu-
mentation on which functions must be called and the specific
functions they expect your interface to perform. The core
includes an ‘Interface’ object which includes object proto-
types for the on-page comment boxes (including those with
radio or checkbox responses), start and stop buttons and the
playhead / transport bars.

5. ANALYSIS AND DIAGNOSTICS
There are several benefits to providing basic analysis tools

in the browser: they allow diagnosing problems, with the
interface or with the test subject; they may be sufficient
for many researchers’ purposes; and test subjects may enjoy
seeing an overview of their own results and/or results thus
far at the end of their tests. For this reason, we include a

Figure 2: Box and whisker plot showing the aggre-
gated numerical ratings of six stimuli by a group of
subjects.

proof-of-concept web page with:
• All audioholder IDs, file names, subject IDs, audio ele-

ment IDs, ... in the collected XMLs so far (saves/*.xml)
• Selection of subjects and/or test samples to zoom in

on a subset of the data
• Embedded audio to hear corresponding test samples
• Scatter plot, confidence plot and box plot of rating

values (see Figure )
• Timeline for a specific subject
• Distribution plots of any radio button and number

questions in pre- and post-test survey
• All ‘comments’ on a specific audioelement
• A ‘download’ function for a CSV of ratings, survey

responses and comments

6. CONCLUDING REMARKS AND FUTURE
WORK

We have developed a browser-based tool for the design
and deployment of listening tests, essentially requiring no
programming experience and third party software. Follow-
ing the predictions or guidelines in [3], it supports remote
testing, cross-fading between audio streams, collecting infor-
mation about the system, among others.

Whereas many other types of interfaces do exist, we felt
that supporting e.g. a range of ‘method of adjustment’ tests
would be beyond the scope of a tool that aims to be versa-
tile enough while not claiming to support any custom experi-

ment one might want to set up. Rather, it supports any non-
adaptive listening test up to multi-stimulus, multi-attribute
evaluation including references, anchors, text boxes, radio
buttons and/or checkboxes, with arbitrary placement of the
various UI elements.

The code and documentation can be pulled or downloaded
from our online repository available at code.soundsoftware.
ac.uk/projects/webaudioevaluationtool.

7. REFERENCES
[1] C. Gribben and H. Lee, “Toward the development of a

universal listening test interface generator in max,” in AES
Convention 138, Audio Engineering Society, 2015.

[2] S. Bech and N. Zacharov, Perceptual Audio Evaluation -
Theory, Method and Application. John Wiley & Sons, 2007.

[3] M. Schoeffler, F.-R. Stöter, B. Edler, and J. Herre,
“Towards the next generation of web-based experiments: A
case study assessing basic audio quality following the
ITU-R recommendation BS. 1534 (MUSHRA),” in 1st Web
Audio Conference, 2015.

[4] S. Kraft and U. Zölzer, “BeaqleJS: HTML5 and JavaScript
based framework for the subjective evaluation of audio
quality,” in Linux Audio Conference, Karlsruhe, DE, 2014.

[5] B. De Man and J. D. Reiss, “APE: Audio Perceptual
Evaluation toolbox for MATLAB,” in 136th Convention of
the AES, April 2014.

[6] E. Vincent, M. G. Jafari, and M. D. Plumbley,
“Preliminary guidelines for subjective evalutation of audio
source separation algorithms,” in UK ICA Research
Network Workshop, 2006.

[7] A. V. Giner, “Scale - a software tool for listening
experiments,” in AIA/DAGA Conference on Acoustics,
Merano (Italy), 2013.

[8] S. Ciba, A. Wlodarski, and H.-J. Maempel, “Whisper – A
new tool for performing listening tests,” in 126th
Convention of the AES, May 7-10 2009.

[9] N. Jillings, D. Moffat, B. De Man, and J. D. Reiss, “Web
Audio Evaluation Tool: A browser-based listening test
environment,” in 12th Sound and Music Computing
Conference, July 2015.

[10] ITURBS Recommendation, “Bs. 1534-1: Method for the
subjective assessment of intermediate quality levels of
coding systems,” International Telecommunication Union,
2003.

[11] G. C. Pascoe and C. C. Attkisson, “The evaluation ranking
scale: a new methodology for assessing satisfaction,”
Evaluation and program planning, vol. 6, no. 3,
pp. 335–347, 1983.

[12] R. Likert, “A technique for the measurement of attitudes.,”
Archives of psychology, 1932.

[13] ITURBS Recommendation, “1116-1: Methods for the
subjective assessment of small impairments in audio
systems including multichannel sound systems,”
International Telecommunication Union, Geneva, 1997.

[14] ITUT Recommendation, “P. 800: Methods for subjective
determination of transmission quality,” International
Telecommunication Union, Geneva, 1996.

[15] D. R. Peryam and N. F. Girardot, “Advanced taste-test
method,” Food Engineering, vol. 24, no. 7, pp. 58–61, 1952.

[16] ITUR Recommendation, “Bs. 562-3,‘subjective assessment
of sound quality’,” International Telecommunications
Union, 1997.

[17] H. A. David, The method of paired comparisons, vol. 12.
DTIC Document, 1963.

[18] S. P. Lipshitz and J. Vanderkooy, “The great debate:
Subjective evaluation,” Journal of the AES, vol. 29,
no. 7/8, pp. 482–491, 1981.

[19] D. Clark, “High-resolution subjective testing using a
double-blind comparator,” Journal of the AES, vol. 30,
no. 5, pp. 330–338, 1982.

code.soundsoftware.ac.uk/projects/webaudioevaluationtool
code.soundsoftware.ac.uk/projects/webaudioevaluationtool

	Introduction
	Architecture
	Remote tests
	Interfaces
	Analysis and diagnostics
	Concluding remarks and future work
	References

